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It is shown that the solution of the problem of scattering of long waves by a finite 
barrier in a rotating system may be obtained directly from the solution of the 
electromagnetic scattering problem for a finite strip. It is shown that the effect 
of rotation is to produce on both sides of the barrier, but away from the ends, 
a wave which is propagated without attenuation parallel to the barrier. 

1. Introduction 
The problem of scattering of long waves by a semi-infinite barrier in a rotating 

system was solved by Crease (1956) using the Wiener-Hopf method. Crease 
(1958) later used the same technique to consider the problem of the propagation 
of long waves into a semi-infinite channel in a rotating system. An alternative 
approach to the problem of scattering by a semi-infinite barrier has been sug- 
gested by Chambers (1964), who shows that the problem may be solved in a 
simple fashion without recourse to the complications of the Wiener-Hopf method. 
Chambers’s approach is an adaptation of earlier work of his (Chambers 1954) on 
the Sommerfeld half-plane problem. 

The present paper considers the problem of the scattering of a plane wave by 
a finite plane barrier in a rotating system. It is shown that a simple transforma- 
tion enables the boundary-value problem to be reduced to one in electromagnetic 
diffraction theory and a formal solution thus obtained in terms of the solution of 
this latter problem. It is shown that in the vicinity of both sides of the barrier, 
but well away from both ends, there exist unattenuated waves of a type first 
observed by Crease (1956) for the semi-infinite barrier thus substantially con- 
firming a conjecture of Crease’s concerning the nature of the solution for the 
finite barrier. 

The general approach of the present paper may be used to reduce any problem 
involving the scattering by plane parallel barriers in a rotating system to  a 
Dirichlet problem for Helmholtz’s equation. In  particular the solution for the 
problem of scattering by two parallel semi-infinite scatterers may be deduced 
from the solution of a similar electromagnetic diffraction problem considered by 
Heins (1948). 

2. Formulation and solution of the boundary-value problem 
It will be assumed that the barrier is of length 2a and occupies the region 

0 < x < 2a of the x-axis of a two-dimensional Cartesian system Oxy. The detailed 
a-2 
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formulation of this type of boundary-value problem has been given by Crease 
(1 956) and from Crease’s work it follows that the wave elevation < satisfies 

where k is real. On the barrier < satisfies 

where p is a real constant. [The constants E and ,8 are defined in terms of the 
physical parameters of the problem in Crease (1956).] It will be assumed that 
there is a plane wave exp [ik(x cos 0, + y sin O,)] incident on the barrier and hence 
apart from this term, <will consist of diffracted and reflected terms propagating 
outwards from the region occupied by the barrier. < is also required to be finite 
near the edge of the barrier. 

If a solution q5 of equation (1) is now defined so that [ = Dq5 where D is the 
operator ajay + i tanhpajax then it follows from equations (1)  and (2) that 

32q5/ax2+ k2 cosh2Pq5 = 0, y = 0 , O  < x < 2a.. 

Q = A exp [ ikx  cosh p] + B exp [ - ikx cosh /I], 

(3) 

(4) 

Thus, on the barrier, 

where A and B are arbitrary constants. The boundary-value problem for $ 
satisfying equation (a), the condition of finiteness a t  the edges, and outgoing at 
infinity, possesses a unique solution for given values of A and B. There is, 
however, no known closed-form solution available for this problem except as an 
expansion in an infinite series involving Mathieu functions. The general boundary- 
value problem is, however, very closely related to the problem of the diffraction 
of an electromagnetic wave by a perfectly conducting strip, and a considerable 
amounti of attention has been given to the solution of the latter problem for 
small andlarge values of the width of the strip (Millar 1958,1960; Seshadri 1959). 

The notation q5(O, x, y) will be used to denote the solution of the electromagnetic 
diffraction problem for an incident plane wave exp [ik(x cos 8 + y sin O)] and 
q5d(0, x, y), the diffracted field, will be defined by 

$(O, x, y) = exp [ ik (x  cos 0 + y sin O)] + $JO, x: y). 

The function q5 vanishes on the strip and is such that is finite a t  the edges of 
the strip and represents an outgoing wave. In  diffraction theory 0 is of course 
real, but it can be verified by inspection of the various solutions that the methods 
of determining the function are still valid for imaginary values of O and hence 
that the values of q5d for such 8 may be formally obtained from the solutions of the 
diffraction problem. It thus follows that a function satisfying equation (4) on the 
boundary is 

The substitution of the right-hand side of equation (5) into the equation 5 = Dq5 
will not yield the necessary incident plane wave term in 5; this, however, is easily 

( 5 )  $ = - A $ d ( i P ,  2, y) - B q 5 d h  - ip, x, Y). 
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remedied by the addition of a suitable multiple of q5(8,, x, y) to the right-hand 
side of equation ( 5 ) .  The final result is 

D$ with q5 defined by equation (6) satisfies all the conditions imposed on capart 
from those a t  the edges of the barrier, and it will now be shown that the imposition 
of the edge conditions enable A and B to be determined uniquely. If (r,, 8,) and 
(r2,  8,) denote polar co-ordinates with origins chosen at x: = 0 and 2a respectively 
then it is well known from diffraction theory that, near rl = 0,  the only singular 
contribution to grad[q5(8,x,y)] arises from a term of the form E1(8)rpsin&3, 
where El depends on the angle of incidence. Similarly, near r2 = 0 the singular 
contribution to grad q5 arises from a term E2(@ r t  sin $8,. Thus, in order that 6 be 
finite at the edges, we have that 

cosh p El(O0) - AEl(i/3) - BE1(n - ip) = 0, ik  sin (8, + ip) 

E,(8,)-AE2(ip)-BE,(7r-ip) = 0. 
cosh p 

ilcsin (8, + ip) 
A = coshp E 2 (8 0 )  E L p -  7r-i~)-El(8,)E,(n-i/3) Hence ik sin (8, + ip) E,(ip) El(. - ip) - El(ip) E2(7r - ia) ' 

(7 )  

(9) 

The functions El and E, are not known in a simple closed form but for the case 
of large ka, which is likely to be the case of most practical interest, approximate 
expressions for El and E, may be deduced from results obtained by Seshadri 
( 1959). Seshadri has obtained approximate expressions for the Fourier transform 
of #(O, x, y) and hence the edge behaviour of q5 can be deduced from an examina- 
tion of the asymptotic expansion of its Fourier transform. In  fact it  follows 
immediately from equations (3.34) and (3.35) of Seshadri's paper that, taking 
notational differences into account, apart from terms independent of 8, 

expi[2ka- in] 
47r (2ka)S 

E,(8) = J2exp[2ikacos8]sin~8- - cot $8 cosec $8 + 0 

3. Discussion of results 
The analysis of tj 2 has enabled a formal solution to be obtained for 6 in terms 

of the solution $ of the electromagnetic problem. The' solution of this latter 
problem is not known in a closed form, but for large values of ka  a considerable 
amount of information is available concerning 9, but even the approximate 
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expressions for q5 are somewhat complicated. It is, however, possible to deduce 
from the above analysis without much elaborate calculation certain features of 
physical interest concerning the behaviour of the wave elevation g .  For the case 
of an infinite barrier Crease (1956, 1958) observed that there exists, in the region 
near the barrier and above it, a wave travelling parallel to the barrier without 
attenuation. It is therefore of interest to examine whether a similar situation 
exists for the case of a finite barrier andcrease has in fact conjectured that in this 
case a certain amount of energy may be trapped in the form of a wave progressing 
round the barrier in a clockwise direction. 

Before considering the effect of a large, but finite, barrier we shall show how the 
existence of the progressive wave near the infinite barrier may be deduced very 
simply from the above analysis. It should be noted that the solution for the 
infinite barrier is not necessarily the limit as a -+ co of that for the finite barrier 
and in this particular case the two solutions are different. This discrepancy is 
due to the fact that the present solution, which is a steady-state one, applies 
after an infinite time and thus we are comparing the solutions of the two 
problems: (i) time infinite followed by a infinite, and (ii) a infinite followed by 
time infinite, and these two problems do not necessarily have the same solution. 
A similar type of discrepancy occurs in the problem of electromagnetic diffraction 
by two parallel strips (Jones 1951). Formally, however, the results for the infinite 
strip may be deduced from these for the finite strip by introducing a slight 
dissipation into the system, i.e. by assuming that k has apositive imaginary part. 
This then gives 

cosh p 
ik sin (0, + ip) cos p,, sech $p ( B  = 0). A = .___ 

Alternatively these results could have been obtained immediately by adapting 
the analysis of $ 2  to cover the case of a semi-infinite barrier. In  this case the term 
involving B in equation (4) would violate the condition of outgoing waves at  
infinity, thus B = 0 and the expression for A then follows from equation (7) and 
the known form of E,(8,). 

It follows immediately from an inspection of the form of q5d near the barrier, 
or by an intuitive extension of the results of geometrical optics that, apart from 
terms which vanish as the inverse root of the distance from the edge near the 
barrier 

exp [ikx cosh p + ky sinh p] for y < 0, 
exp [ikx cosh p - ky sinh p] for y > 0. 

The operator D annihilates the plane-wave term in q5 for y < 0 but for y > 0 it  
follows that the dominant term in the wave height away from the edge is given by 

4i cosh /3 cos 46, sinh &3 
sin (0, + ip) exp { ik (x  cosh p + y sin ip)}, for y > 0. (15) 

The expression (15) agrees with expression (28) of Crease (1958) if it  is noted that 
there is a slight algebraic slip in deriving Crease's expression (28) from his 
expression (26). 
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The above analysis may now be modified to investigate the behaviour of 
y near a large, but finite, barrier. Equation (14) still holds but we also have that, 
under the same conditions as equation (14), 

] (16) 
exp [ - ikx cosh p + ky sinh p] for y < 0, 

‘ d ( 7 T - i p 7 X ’ Y )  - ( exp[-ikxcosh/3--kysinh/3] for y > 0. 

It now follows immediately from equations (14) and (16) that, in the region just 
above the barrier and well away from both ends, the dominant term in the wave 
height is 

The corresponding result in the region just below the barrier and well away from 

(18) 
the ends is 

Expressions (17) and (18) substantially confirm Crease’s conjecture. It should 
also be noted that in the region just below the barrier, there will be an additional 
plane wave present due to the reflexion of the incident wave a t  the barrier. 

The analysis of 9 2 may be extended in an obvious fashion to reduce the problem 
of scattering by any number of plane parallel barriers to a Dirichlet problem for 
Helmholtz’s equation. In  certain cases this latter problem can be identified with 
a problem in electromagnetic diffraction and a formal solution obtained. One 
example of such a problem is the scattering of long waves by two parallel semi- 
infinite barriers-this problem was considered by Crease (1958). The solution of 
this problem can be obtained formally from the solution of a corresponding 
electromagnetic diffraction problem solved by Heins (1948). In  fact the dominant 
behaviour of the wave elevation near the barriers may be deduced in an ele- 
mentary fashion from Heins’s work. 

- 2ksinhPA exp [ik(zcoshp+ ysinib)]. 

2k sinh PB exp [ - i k ( x  cosh /3 + y sin ip)]. 

(1‘7) 

The author is indebted to Mr L. G .  Chambers for stimulating his interest in the 
above work by showing him a prepublication copy of his analysis of the semi- 
infinite barrier problem. 
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